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general, the reaction diffusion bidomain solution yields a slightly
broader biphasic deflection and slightly increased amplitude due to
the transmural electrotonic effects of the bending wavefront. The
results also show that the current source model is generally valid for
the thick bath case, although the timecourse of the biphasic deflection
coincident with activation is narrower than that predicted by either the
full bidomain or analytical model, since all the sources are assumed
to lie in an infinite volume conductor. The current source model,
however, is not valid for the thin and no bath cases.

For tissue with a finite bath extent, the analytical model reveals that
the extracellular potential, with a far field reference, can be interpreted
of as being composed of the sum of two components; the particular
(core-conductor) solution, and the homogeneous solution. The extent
of the tissue and bath modulates the contribution these two solutions
make to �e. As the bath becomes infinite, b!1,H2(k)! 0, and the
solution for �o and �h are simplified to the infinite bath derivation of
Henriquez et al. [1]. As b! a, the numerator ofH3(k)! 0 and�h !
0. The solution for �e is, thus, the classical core-conductor equation
[2]. Potentials from domains with bath thickness between these two
extremes have contributions from both the particular and homogeneous
solutions. For example, the potential on the tissue surface in the thin
bath case (Fig. 2, site 3) is inverted and monophasic as predicted by the
particular solution [see (3)] but with a smaller magnitude. This is due to
the loading of the bath, through which current may be shunted. When
no bath is present, the analytic and numerical solutions both reach the
magnitude predicted by the particular solution.

A typical model to compute �e [see (15)] is based on the assumption
that the transmembrane current sources lie in an extensive isotropic
bath and, thus, resemble the thick bath case. Note that the impact of
the bath depends on the tissue thickness and conductivities, as well as
the conductivity of the bath and, therefore, the extensiveness of the bath
cannot be determined from knowledge of bath thickness alone [8].

The analytic model is limited by the assumptions that Vm(z) is
constant in the depth (i.e., a planar front) and the tissue is equally
anisotropic. As shown by Roth, an analogous set of equations can
also be derived under the assumption that the intracellular potential is
independent of depth (y-direction). This would allow for the tissue to
have unequal anisotropy [8]. We expect the two models to have similar
predictive power and computational costs.

In summary, the analytical model provides an efficient way to
explore the extracellular potential in realistic bidomain preparations
that involve a finite bath. In practice, Vm(z) can be obtained from
a monodomain model and the analytical model can then be used to
estimate the extracellular potentials for tissue with a variably thick
bath. The advantage of this approach is that the combined mon-
odomain model and analytical model can be used to accurately solve
for extracellular potentials in the presence of ionic inhomogeneities,
while using considerably less computational time and resources than
an equivalent bidomain.
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Correction of Motion Artifact in Cardiac Optical Mapping
Using Image Registration
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Abstract—Cardiac motion is one of the main sources of artifacts in epi-
fluorescence imaging experiments. It can cause significant error in electro-
physiological measurements such as action potential duration. We present
a novel approach that uses image registration based on maximization of
mutual information to correct for in-plane cardiac motion in such exper-
iments. The approach is relatively fast (a few seconds per frame) and is
performed entirely post acquisition. The image registration approach is an
alternative to traditional approaches such as mechanical restraint of the
heart or addition of chemical uncouplers. Our results show that the image
registration method significantly reduces motion-related artifacts in exper-
imental data.

Index Terms—Image registration, motion correction, mutual informa-
tion, optical mapping.

I. INTRODUCTION

Optical recording techniques have been widely employed in car-
diac electrophysiology for studies of electrodynamics. Optical map-
ping is based on the proportional change of the induced fluorescence
intensity resulting from the change in the transmembrane potentials in
dye-stained tissue. The most significant constraint in cardiac optical
recording is muscle contraction, which alters the fluorescence inten-
sity and deforms the shape of the optical potentials. When the tissue
moves during the recording, its relative location to the sensor and the
light source changes, resulting in an artificial variation of fluorescence
intensity intermingled with the desired signal. Most significantly, quan-
tification of intensity variation is not meaningful if the fluorescence
is recorded from different sites on the tissue in the same recording
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episode. Tissue contraction starts immediately after the upstroke of ac-
tion potential. Therefore motion artifacts are more pronounced during
action potential plateau when contraction is maximal and during repo-
larization phase when relaxation occurs. As a consequence, the correct
measurements of many interesting electrophysiological phenomena,
such as action potential duration (APD) and repolarization, become
impossible.

Common approaches to dealing with motion artifacts in fluorescence
recording include mechanical constraining and chemical immobiliza-
tion methods [1]–[4], which are applied prior to imaging. In this work,
we instead propose a retrospective motion correction approach that is
based on a post-processing software technique known as image regis-
tration to spatially align the sequence of digital images taken from the
optical recorder such that each location in the images acquired repre-
sents an intensity measurement of the same tissue location throughout
the recording episode. We have adapted an existing registration tech-
nique used in medical imaging (see Maintz et al. [5] for an overview
of medical image registration) so as to suit the epicardial fluorescence
imaging data.

II. MATERIALS AND METHODS

A. Epifluorescence Mapping

The experimental procedure was similar to that of a previous study
[4]. In brief, New Zealand white rabbits weighing 4.4–5.5 kg were
injected with 1000 units of heparin and 70 mg/kg sodium pentobar-
bital to induce deep general anesthesia. The heart was excised and
the ascending aorta cannulated and secured for retrograde perfusion
of the coronaries with a modified HEPES perfusate. The potential-sen-
sitive dye di-4-ANEPPS (Molecular Probes, OR) at a concentration of
0.5�Mwas added to the perfusate for approximately 15 min to stain the
heart. Fluorescence from the heart surface was elicited by a solid-state,
frequency-doubled laser (Verdi V5, Coherent, Santa Clara, CA) at a
wavelength of 532 nm. Laser light was delivered to the heart using
multiple 1-mm optical fibers (SP-SF-960, FIS Inc., Oriskany, NY).
The root-mean-square variation of laser intensity was 0.02%. The emit-
ting fluorescence was imaged with a high-speed charge—soupled de-
vice camera (Model CA-D1-0128T, Dalsa Inc., Waterloo, ON, Canada)
through a color glass filter with a cutoff wavelength of 600 nm (R60,
Nikon).

B. Motion Correction via Image Registration

Given a series of N digital frames from the experimental setup
described above fI1(x); I2(x); . . . ; IN(x)g, where x = fx; yg, we
choose an image from the sequence that will serve as a reference
frame for all other images. We call this reference frame T (x). We
then proceed to align each frame k in the original image sequence to
the reference frame using the image registration algorithm proposed
in [6], which finds the optimal alignment by solving numerically the
following optimization problem:

argmax
f

Q (Ik (fk(x)) ; T (x)) (1)

where Q(:; :) is the mutual information image similarity measure and
fk(x) = Akx + tk is a two-dimensional affine spatial transformation
containing six independent parameters capable of performing rotation,
scaling, shear and translation, with tk = f(tx)k; (ty)kg. Maximiza-
tion of mutual information was first proposed in medical image regis-
tration problems in [6], [7] and has been shown to be robust in matching
images whose intensity values are not linearly related [8], [9].

Fig. 1. Images from a movie sequence: (A) reference frame; (B) maximum
displacement before motion correction; (C) maximum displacement after
motion correction. The relative displacement between the marker (white dot),
which is placed at the same exact coordinate in all images, and image features
(pointed by black arrow) is visibly reduced after motion correction.

The mutual information similarity measure is given by

Q (Ik (fk(x)) ; T (x)) =
i;t

pI ;T (i; t)� log
pI ;T (i; t)

pI (i)pT (t)
(2)

where pI (i) and pT (t) are the marginal probability density functions
(pdf) of Ik(fk(x)) and T (x), respectively, and pI ;T (i; t) is their joint
pdf. The joint pdf pI ;T (i; t) is computed from the normalized joint
histogram of the images Ik(fk(x)) and T (x) which is a matrix. The
(i, t) entry of this matrix stores the number of pixels that have intensity
i in image one and intensity t in image two. When divided by the total
number of pixels, it is an estimate of the joint probability function of the
intensity values of the two images. Marginal distributions are obtained
by summing along the lines and columns of this matrix. In this work,
we have used 64 bins (i.e., we have divided the intensity range into 64
intervals) to create the joint histograms. Note that indexes i, t, for which
pI (i), pT (t) or pI ;T (i; t) is zero are not included in the computation
of (2). Given a transformation fk(x) the image Ik(fk(x)) is computed
using bilinear interpolation.

As in [6], we use Powell’s direction set method to compute the affine
parameters that solve (1) [10]. Powell’s direction set method requires
only the evaluation of function values for optimizing a cost function.
It goes about finding a minimum by using a set of conjugate, or “non-
interfering,” directions that are updated iteratively. For a quadratic cost
function, it can be shown that Powell’s method finds the minimum of
the function in M(M+1) line minimizations, where M is the number
of parameters the cost function is dependent upon. The optimization is
initialized with an identity transformation: all translation, rotation, and
shear parameters set to zero, while the scaling parameters are set to 1.
This ensures that fk(x) = x. The tolerance value is 1.0e-4. Failure to
increase the value of the similarity measure by more than 1.0e-4 in one
optimization iteration signals completeness.

C. Data Analysis

Preliminary analysis of the data was done visually, focusing on re-
gions of interest in which heart motion was evident. We analyzed the
effect of our registration method on tissue activation quantitative mea-
sures such as action potential duration (APD), activation isochrones,
as well as abnormal or excessive depolarization and repolarization
extracted from the movie sequences. The tissue activation timing of
each pixel is detected by the peak of the first derivative of the time
variation of the recorded fluorescence intensity. Activation isochrones
were constructed from all the activation timing in the entire image.
The frame of tissue at diastole (FFF restrestrest) was defined as the frame right
before the activation wavefront entered the field of view, whereas the
frame with peak transmembrane potential (FFFpeakpeakpeak) was selected when
the entire field was depolarized. Because the fluorescence intensity is
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Fig. 2. Activation isochrones, negative and positive deflection, and activation potential duration (A) before and (B) after correction. Activation isochrones remain
relatively intact after motion correction while positive and negative deflection artifacts are reduced. Activation potential duration measurements are also more
uniform after motion correction.

negatively proportional to the amplitude of transmembrane potential,
—(FFFpeakpeakpeak�FFF restrestrest) represents the peak amplitude of the optical trans-
membrane potential (FFFampampamp). For every pixel in the image sequence,
the “excessive depolarization” was calculated from the maximum de-
viation from FFFpeakpeakpeak in the depolarized direction. Similarly, the “exces-
sive repolarization” was calculated from the maximum deviation from
FFF restrestrest in the repolarized direction. These two quantities were repre-
sented as a percentage of FFFampampamp for all the pixels. The APD (APD50)
was measured from the activation to the time when the amplitude fall
below 50% of FFFampampamp in the repolarizing phase. Lastly, positive and
negative deflection artifacts are also visible in the individual traces
(image intensity of a fixed pixel location over time) of the movies.
We also include sample traces obtained before and after correction
with our method.

III. RESULTS

Fig. 1 displays representative registration results produced by the
method described herein. Sequences of frames before [Fig. 1(A)] and
after [Fig. 1(B)] registrations are shown. To help elucidate the motion
present in the original sequence and the improvements in the corrected
sequence we have placed a marker at the same pixel location for
all frames. The reduced relative displacements between anatomical
features and the marker after our motion correction approach indicate
good overall alignment between the different movie frames. Fig. 2
shows the measured excessive repolarization (negative deflection) and
excessive depolarization (positive deflection) before (row A) and after
motion correction (row B). These effects have been greatly reduced
after correction. The pattern of the activation potential wavefront
propagation, as displayed by the movie’s isochrones, remains intact.
In addition, the APDs become significantly more evenly distributed
after registration. Note that in this mode of motion, the tissue did not
move out of the imaging field significantly. Fig. 3 shows two pairs of
the original (top) and the corrected (bottom) traces. Pair A shows an
upward deflection after the activation due to the motion, whereas pair
B shows a downward deflection. Both these deflections are corrected
using the image registration algorithm. Note that Figs. 1–3 show
representative analyses results. The same experiment was conducted
on a set of 11 movies. The results generated on these were similar
to those presented here.

Fig. 3. Two examples of trace extracted from original and corrected movies.
Deflection artifacts are visibly reduced after motion correction.

IV. DISCUSSION AND CONCLUSION

We have presented a simple method to correct for global motion
present in epicardial fluorescence imaging experiments. Results
showed that our approach significantly reduces motion artifacts of
such image sequences. The algorithm is capable of reducing excessive
depolarization and repolarization artifacts while preserving activation
potential propagation. Activation potential duration is also more
evenly distributed after correction with our approach. Our software
was implemented in the IDL language (Research Systems, Inc.). The
registration of each movie frame (128 � 128 pixels) takes about 5
seconds on a Pentium system running at 1.3 MHz. Implementing
the software in a more efficient computer language such as C would
certainly decrease computation time.

Note that the motion correction scheme presented here is one of
many options. That is, instead of registering each movie frame to a
single reference frame it is also possible to register each frame to the
previous one. The advantage of the second approach is that the two
consecutive frames should be more similar to each other. We have tried
this option and, in our experience, this strategy is less stable than our
current option. We have observed that while some corrections are good,
some experiments generated results that were noticeably incorrect. We
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believe that the cause for this is the accumulation of successive regis-
tration errors. That is, the error for the registration of say frames 0 and
1 may be small, and so may be the error in the registration of frames 1
and 2. The error for the registration of frames 0 and 2, however, should
in theory be larger than the error between 0 and 1 or the error between
1 and 2. Since the movie sequences we are using contain hundreds of
frames, it is easy to see how this strategy can potentially generate highly
inaccurate results. Yet another option is to use a single reference frame
and initialize the optimization procedure using the result of the registra-
tion of the previous frame. We are currently investigating such options
and trying to improve the quality of our corrections.

It is important to clarify the limitations of our approach. First, all
motions are assumed to be in plane. Thus out of plane motions cannot
be corrected and in some instances may confound our correction ap-
proach. Furthermore, pixels that moved out of the imaging field due
to motion cannot be recovered. Possible solutions to both problems
include imaging the surface of the heart in stereo with multiple cam-
eras or mirrors. This would allow collection of three-dimensional in-
formation that could be used to correct for motion artifacts out of the
imaging plane. In addition, we only corrected for global motions (rota-
tions, translations, shear and scaling) in this initial attempt to use image
registration to correct for motion artifacts. Local motions can be further
corrected using nonrigid (nonlinear) registration methods. Preliminary
results indicate that this is a promising direction, though technical im-
plementation details can be complicated.

In our experience we have found that the method presented above
works best with images that have a small field of view focused on the
surface of the heart. This could be related to the fact that while the affine
spatial transformation model we use may be appropriate to describe
local movement, it is not an appropriate model to simultaneously de-
scribe movement of several regions of the heart. The images presented
in this paper have a field of view of about 20� 20 mm, with resolution
of about 200 � 200 microns.

In addition, it should also be noted that the method described above
may fail to correct for motion in image sequences that have a large acti-
vation signal to noise ratio. In such cases, the algorithm may confound
image features with activation signal, making motion correction diffi-

cult. The activation signal to noise ratio for our images falls typically
in the 5 to 10 range. Initial experiments show that the algorithm works
well for such images. At this point, however, we have not performed
experiments to determine exactly at which activation signal to noise the
algorithm starts failing.
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